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ABSTRACT

The design of hardware and software for safety critical applications often involves

use of formal verification techniques to ensure correctness of implementation. If

specification fails to satisfy then the cycle of design and verification needs to be

repeated. Lengthy and costly design process can be avoided by the use of auto-

mated controller synthesis techniques which can provide correct-by-construction

controller that enforces the desired formal specification on the given system. Use

of synthesis techniques with continuous systems require construction of a symbolic

model which in turn require computation of reachable sets. The set of states that

can be attained by a system for given values of initial state, input and time horizon

is referred to as reachable state set.

As reachable sets are infinite objects their exact computation is difficult, thus their

overapproximations are usually computed whose accuracy affects the computation

time and size of the synthesized controller. The choice of set representation also

plays an important role in accuracy of approximation and time requirement. We

used zonotopes which are centrally symmetric convex polytopes and are closed

under linear transformation and Minkowski sum.

After a short introduction to the process of symbolic model construction we dis-

cuss three methods of reachable set computation for nonlinear control systems.

These are then used together with SCOTS, which is a tool for symbolic controller

synthesis, to synthesize controllers for reachability and invariance specifications on

four examples.
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Chapter 1

Introduction

Symbolic models (also referred to as discrete abstraction) allow to use automated

synthesis techniques to obtain correct by construction controller that enforces some

given specification, say expressed in linear temporal logic (LTL), on a system [1–

4]. The designed controller does not need any separate verification phase, as there

comes a formal guarantee of satisfaction of the specification. Synthesis refers to

the generation of system description based on desired behavior specified in some

formal language. The synthesis process merges the design and verification steps

which are otherwise two distinct steps in the usual design-verify methodology

involving multiple verification rounds. This helps to control both time and cost.

Symbolic model as a finite state machine can be obtained by use of reachable state

sets which refer to the set of states that can be attained by a system from it’s given

initial state set under a given set of input over a given time. Consider the Van der

Pol oscillator dynamics taken from [5]

ẋ1 = x2

ẋ2 = x2 − x1 − x2
1x2

(1.1)

1
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Figure 1.1: An overapproximation of reachable set for Van der Pol oscillator.

with initial state X0 = [1.25, 1.55] × [2.35, 2.45] and time duration 0 to 7. An

overapproximation of its reachable set is shown in grey in Figure 1.1.

As reachable sets are infinite objects their exact computation is difficult, thus

their overapproximations are usually computed. Overapproximation of reachable

set of nonlinear systems to any desired accuracy is investigated in [6]. Two lines

of research can be seen in approximate reachability computation. One concerns

the computation working directly with the original dynamics of the system [7, 8],

while in the second reachable sets are computed using abstracted models which are

simplified representation of the original system [9, 10]. To get abstracted model

of nonlinear system the state space may be partitioned to get local abstractions.

Abstraction to piecewise linear systems together with fixed structure partitioning

of state space is developed in [11]. This is also referred to as hybridization, as

each area of linearization has it’s own particular dynamics. A disadvantage of

fixed partitioning is the exponential increase in the number of partitions with the

number of states. This can be reduced by the use of on-the-fly partitioning [12]

where partitions are resorted to only when required.

Use of Taylor model [13] (polynomial function together with an interval remain-

der) to compute reachable set for nonlinear systems is discussed in [14]. Flow∗ [15]

which is a tool for verification of cyber physical systems is based on Taylor mod-

els. For application of zonotopes and support functions as geometric structures

for set representation in reachability analysis of linear systems refer respectively
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[16], [17]. The choice of set representation plays an important role in accuracy

of overapproximation and time requirement. For example, we can get arbitrary

accuracy in approximation of reachable set for linear systems by use of general

polytopes. But their Minkowski sum results in polytopes of greater complexity.

Set representation as ellipsoids or parallelotopes are not closed under Minkowski

sum and thus further approximations are required. Error due to these sequential

approximations keep on adding up and result in greater conservativeness of the

final set. Such an increase in error is called wrapping effect [18]. Use of zonotopes

is advantageous as they are closed under linear transformation and Minkowski

sum, and these operations can be easily and efficiently computed.

The aim of this work was to implement and compare some of the methods of

computation of reachable set in context of symbolic controller synthesis. For this

we made use of SCOTS [19] which is a software tool for controller synthesis of

systems with nonlinear dynamics. As input, the tool requires the system descrip-

tion in the form of differential equation, together with discretization parameters

for computation of symbolic model which is related under feedback refinement

relation (FRR) with the given system. FRR ensures that the controller designed

for symbolic model also enforces the given specification on the original system.

With better accuracy in approximation of reachable set we obtain lower number

of transitions in the symbolic model which results in faster controller synthesis. It

also result in larger controller domain i.e., we have control input available for a

larger area of state space.

SCOTS currently uses the method of growth bound to compute reachable set.

The method is compared with two other methods, both based on conservative

linearization, one of them implemented in the toolbox CORA [20] that involves

reachability algorithms, and the other in SpaceEx [21] which is a verification plat-

form for hybrid systems.

Among numerous other applications reachable sets are also used in verification of

safety properties [5] of nonlinear and hybrid control systems. The set of states

which are undesired and to be avoided are referred to as unsafe set. If intersection
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of overapproximation of reachable set with the unsafe set is empty then safety is

ensured.

Chapter 2 present some basic terms and notations involved. In Chapter 3 we

present a simplified version of the process in which symbolic models are constructed

in SCOTS. In Chapter 4 three methods for reachable set computation of nonlinear

control systems are discussed. Chapter 5 present the results and conclusion.



Chapter 2

Notations and Preliminaries

2.1 Notations

• Interval vectors and matrices denoted by Zapf Chancery letters (A, B, . . . ).

By an interval matrix we mean a matrix with interval components.

• Zonotopes denoted by raised Z (AZ , BZ , . . .)

N set of natural numbers {0, 1, 2 . . . }

R set of real valued numbers

R+ set of non-negative real valued numbers

IR set of real valued intervals

IRn×m set of n×m real interval matrices

2.2 Interval Computations

For two intervals a = [a, a] ∈ IR and b = [b, b] ∈ IR, the addition and multiplica-

tion operations are defined as

a+ b = [a+ b, a+ b]

ab = [min{ab, ab, ab, ab},max{ab, ab, ab, ab}]
(2.1)

5
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2.3 Matrix Exponential

The matrix exponential eAt can be overapproximated by eAtp ∈ IRn×n using the

first p terms of the Taylor series and an interval bound for the remainder [22]. For

A ∈ Rn×n, and some p satisfying ε < 1

eAt ∈ eAtp =

p∑
i=0

(At)i

i!
+ E(t), (2.2)

where

E(t) =
(‖A‖∞ t)p+1

(p+ 1)!

1

1− ε
[−1,1],

ε =
‖A‖∞ t
p+ 2

< 1

(2.3)

1 ∈ Rn×n is a matrix of ones, [−1,1] ∈ IRn×n

2.4 Zonotopes

We begin with definitions of some geometric structures which are helpful to visu-

alize zonotopes.

Definition 2.1. (Hyperplane). A hyperplane H(f,d) is a set that can be repre-

sented as

H(f, d) =
{
x ∈ Rn : fTx = d

}
(2.4)

where f ∈ Rn, d ∈ R.

Definition 2.2. (Half-space). A hyperplane divides the Euclidean space into

two open half-spaces.

Hs(f, d) =
{
x ∈ Rn : fTx < d

}
(2.5)

Definition 2.3. (Polyhedra). A convex polyhedra P (F, d) is the region formed

by intersection of a finite set of half-spaces [23]

P (F,D) = {x ∈ Rn : Fix ≤ di, i = 1, . . . ,m} (2.6)



Chapter 2. Preliminaries 7

where Fi is the ith row of the matrix F ∈ Rm×n and D = [d1 . . . dm]T .

Polytopes are bounded polyhedra i.e., bounded intersection of finite number of

half-spaces. Zonotopes are centrally symmetric convex polytopes, which can be

represented by a center and a set of generators.

Definition 2.4. (Zonotope). A zonotope ZZ is a set such that:

ZZ =

{
x ∈ Rn : x = c+

q∑
i=1

β(i)g(i),−1 < β(i) < 1

}
(2.7)

= (c, g(1), . . . , g(q)) (2.8)

where c ∈ Rn is the center, q is the number of generators, and g(i) ∈ Rn is the ith

generator.

Number of vertices ≤ 2
∑n−1

i=0

(
q−1
i

)
Number of facets ≤ 2

(
q

n−1

)
• A 2D example: Consider a two dimensional zonotope having three gener-

ators.

Z =


1

2


︸︷︷︸
c

,

0.5

0


︸ ︷︷ ︸
g(1)

,

 0

0.5


︸ ︷︷ ︸
g(2)

,

0.7

0.7


︸ ︷︷ ︸
g(3)


Figure 2.1(a) shows the zonotope which is a line segment obtained when

only g(1) is considered. It is as if the centre is traversed in both directions

parallel to the vector g(1) by a distance equal to its magnitude. When g(2)

is included its direction and magnitude decide the direction along which the

line segment is to be traversed and by what amount. Result is shown in

Figure 2.1. The complete zonotope is shown in Figure 2.1(d).

• Absolute value of zonotope ZZ = (c, g(1), . . . , g(q)) is computed as

∣∣ZZ∣∣ = |c|+
q∑
i=1

∣∣g(i)
∣∣ (2.9)
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Figure 2.1: Construction of a 2D zonotope with 3 generators.

2.4.1 Minkowski sum

Minkowski sum of two sets A,B ⊂ Rn is

A+B = {a+ b : a ∈ A, b ∈ B} (2.10)

Zonotopes are closed under Minkowski sum, i.e. the result is also a zonotope. For

two zonotopes ZZa = (ca, g
(1)
a , . . . , g

(q)
a ), ZZb = (cb, g

(1)
b , . . . , g

(m)
b ) the Minkowski

sum can be obtained by addition of centers and concatenation of the generators,

ZZa + ZZb =
(
ca + cb, g

(1)
a , . . . , g(q)

a , g
(1)
b , . . . , g

(m)
b

)
(2.11)
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2.4.2 Order of Zonotope

Given a zonotope ZZ = (c, g(1), . . . , g(q)) ⊆ Rn, having q generators, its order

is defined to be q
n
. Sequence of operations such as Minkowski addition keep on

increasing the order of the resulting zonotope. With this, memory requirement

and computation time may also increase. Thus arises the need to control the order

of the involved zonotopes.

Zonotope order reduction:

For a zonotope ZZ = (c, g(1), . . . , g(q)) in Rn, if its order is to be reduced to m,

where q
n
> m, m ∈ {1, 2, . . . , } then p = q − (n(m − 1)) generators are replaced

by n generators such that the origin centered zonotope constituted by the former

group of generators is included in that by the latter [16]. Result will be a zonotope

with mn generators and thus of order m. To select the group of generators that is

to be replaced, difference of infinity norm from the unit norm for each generator

is sorted ∥∥g(1)
∥∥

1
−
∥∥g(1)

∥∥
∞ ≤ . . . ≤

∥∥g(q)
∥∥

1
−
∥∥g(q)

∥∥
∞

Then the first p generators are selected as they are similar to vectors which are

parallel to one of the axes and thus the origin centered zonotope formed by them is

well overapproximated by an interval hull. If h(1), . . . , h(p) are the selected gener-

ators then the group is replaced by the generators of the zonotope representation

of the interval hull of the zonotope (0, h(1), . . . , h(p)).

2.4.3 Matrix multiplication

Zonotopes are closed under linear transformation. For a zonotope ZZ ⊂ Rn the

linear map described by a matrix L ∈ Rm×n results in the zonotope

LZZ = {x ∈ Rm : x = Lc+

q∑
i=1

β(i)Lg(i),−1 ≤ β(i) ≤ 1}

= (Lc, Lg(1), . . . , Lg(q))

(2.12)
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2.4.4 Interval matrix multiplication

Let M be an interval matrix which can be expressed as M = M̃ + [−M̂, M̂ ]

where [−M̂, M̂ ] is a symmetric interval matrix, M̃, M̂ ∈ Rn×n. A zonotope over-

approximation of the multiplication of M with ZZ can be obtained as [24]

MZZ =
(
M̃c, M̃g(1), . . . , M̃g(q), v(1), . . . , v(n)

)
v

(i)
j =

 0, i 6= j

M̂j

(
|c|+

∑q
k=1 |g|

(k)
)
, i = j

(2.13)

2.4.5 Convex hull

The convex hull of two sets A,B ∈ Rn is the smallest convex set that contains

both of them. In general, the convex hull of two zonotopes is no more a zonotope.

The zonotope which over-approximates the convex hull of ZZa = (ca, g
(1), . . . , g(q))

and ZZb = (cb, f
(1), . . . , f (m)), m ≥ q can be obtained as [16]

CH(ZZa , Z
Z
b ) =

1

2

(
ca + cb, g

(1) + f (1), . . . , g(q) + f (q),

ca − cb, g(1) − f (1), . . . , g(q) − f (q),

2f (q+1), . . . , 2f (m)
) (2.14)

An example of zonotope overapproximation of convex hull of two 2-dimensional

zonotopes is given in Figure 2.2.

2.4.6 Interval hull

Interval hull, i.e. the axis-aligned smallest enclosing box, of a zonotope ZZ ⊂ Rn

can be obtained as

IH(ZZ) =
[
η, η
]
∈ IRn (2.15)

where, η, η ∈ Rn, η = c−
∑q

i=1

∣∣g(i)
∣∣ , η = c+

∑q
i=1

∣∣g(i)
∣∣ , absolute values taken ele-

ment wise. The interval
[
η, η
]

can be represented as a zonotope ηZ = (cη, g
(1)
η , . . . , g

(q)
η ),
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−1 −0.5 0 0.5 1 1.5 2

−0.5

0

0.5

1

1.5

2

2.5

x
1

x
2

Figure 2.2: Convex hull of two zonotopes.

where cη = 0.5(η + η), and

g
(i)
ηj =

 0, i 6= j

0.5(ηj − ηj), i = j
, i ∈ {1, . . . , q}, j ∈ {1, . . . , n}.

Each generator of ηZ has only one non zero element.

−2 −1 0 1 2 3 4
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x
1

x
2

Figure 2.3: Interval Hull of a two dimensional zonotope.
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2.4.7 Quadratic Map

For matrices Q(i) ∈ Rn×n, (i = 1, . . . , n) and a zonotope ZZ = (c, g(1), . . . , g(q)), a

zonotope overapproximation of the set

ZQ =
{
φ | φi = xTQ(i)x, x ∈ ZZ

}
can be obtained as [25]

quad(Q,ZZ) =
(
d, h(1), . . . , h(m)

)
(2.16)

where m =

q + 2

2

− 1,

di = cTQ(i)c+ 0.5

q∑
s=1

g(s)TQ(i)g(s)

j = 1, . . . , q : h
(j)
i = cTQ(i)g(j) + g(j)TQ(i)c

j = 1, . . . , q : h
(q+j)
i = 0.5g(j)TQ(i)g(j)

l =

q−1∑
j=1

q∑
k=j+1

1 : h
(2q+l)
i = g(j)TQ(i)g(k) + g(k)TQ(i)g(j)

Proof.

ZQ =
{
φ | φi = xTQ(i)x, x ∈ ZZ

}
As x is any point inside ZZ =

{
c+

∑q
j=1 β

(j)g(j),−1 ≤ β(j) ≤ 1
}

, it can be sub-

stituted as

=

φ | φi =

(
c+

q∑
j=1

β(j)g(j)

)T

Q(i)

(
c+

q∑
j=1

β(j)g(j)

)
,−1 ≤ β(j) ≤ 1


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on rearranging we get

ZQ =

φ|φi= cTQ(i)c+

q∑
j=1

0.5g(j)TQ(i)g(j)

︸ ︷︷ ︸
di

+

q∑
j=1

β(j)
(
cTQ(i)g(j) + g(j)TQ(i)c

)
︸ ︷︷ ︸

h
(j)
i

+

q∑
j=1

(2(β(j))2 − 1) 0.5g(j)TQ(i)g(j)︸ ︷︷ ︸
h
(q+j)
i

+

q−1∑
j=1

q∑
k=j+1

βjβk

(
g(j)TQ(i)g(k) + g(k)TQ(i)g(j)

)
︸ ︷︷ ︸

h
(2q+l)
i

, βi ∈ [−1, 1]


⊆
(
d, h(1), . . . , h(m)

)
Resulting zonotope is an overapproximation as β(j) ∈ [−1, 1] which if replaced by

the interval appears multiple times in the same expression.



Chapter 3

Construction of Abstraction

3.1 Systems and relations

Definition 3.1. (Nonlinear control system). A nonlinear control system is a

tuple Σ = (Rn, U,U , f), where Rn is the state space, U ⊆ Rm is a bounded input

set, U is a subset of set of all functions of time from R+
0 to U , and f is a locally

Lipschitz continuous function from Rn × U to Rn.

The trajectory ξ is said to be a solution of Σ if there exists υ ∈ U satisfying:

ξ̇(t) = f(ξ(t), υ(t)), (3.1)

for any t ∈ R+
0 . Existence and uniqueness of the solution ξ is ensured by the

assumption of locally Lipschitz continuity. The value of the solution at time t

under the input signal υ and starting from initial condition x is represented by

ξx,υ(t).

Next we define transition system which will be used to represent both the sampled

nonlinear control system and the symbolic model.

14



Chapter 3. Construction of Abstraction 15

Definition 3.2. (Transition system). A transition systems is a tuple S =

(X,X0, U,−→) where X is a set of states, X0 ⊆ X is a set of initial states, U is a

set of inputs, −→⊆ X × U ×X is a transition relation.

Definition 3.3. (Sampled control system as a transition system). For

sampling time τ ∈ R+, the sampled nonlinear control system is a tuple Sτ (Σ) =

(Xτ , Xτ0, Uτ ,−→τ ), where Xτ = Rn, Xτ0 ⊆ Xτ , Uτ = U , the transition relation is

defined as

xτ
u−→τ x

′
τ iff x′τ = ξxτ ,u(τ),

where the input signal υ(t) = u ∈ Uτ for t ∈ [kτ, (k + 1)τ ], i.e. υ(t) is piecewise

constant.

In rest of the work we will consider only piecewise constant input signal, therefore

we will use the notation ξx,u(t) to represent the value of solution at time t starting

from initial condition x under a input signal kept fixed at u.

Only the states reached at instants kτ, k ∈ N are related under the transition

relation −→τ .

Definition 3.4. (Feedback refinement relation, FRR). Consider two tran-

sition systems S1 = (X1, X10, U1,−→1) and S2 = (X2, X20, U2,−→2) having U2 ⊆

U1. A strict relation Q ⊆ X1×X2 is a feedback refinement relation from S1 to S2

if following holds for every pair (x1, x2) ∈ Q:

(i) U2(x2) ⊆ U1(x1),

(ii) u ∈ U2(x2)⇒ Q(Postu(x1)) ⊆ Postu(x2),

and the feedback refinement relation from S1 to S2 is denoted by S1 �Q S2.

Postu(x) is the set of all u-successors of state x.

3.2 Symbolic model

Definition 3.5. (Symbolic model). For state space quantisation η ∈ Rn and

input space quantisation µ ∈ Rm, a symbolic model of Sτ (Σ) is given by a tuple
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Sq(Σ) = (Xq, Xq0, Uq,−→q), where Xq = [Rn]η is the quantised state space, Xq0 ⊆

Xq, Uq = [U ]µ is the quantised input space, xq and x′q ∈ Xq, xq
u−→q x

′
q iff

x′q∩Rτ (xq, u) 6= ∅. Rτ (xq, u) =
⋃
x∈xq ξx,u(τ) is the reachable set at time τ starting

from initial state xq moving along system trajectory under input u.

Each element of the quantised state space Xq and the quantised input space Uq

is a hyper-interval whose size is determined by the vector η and the vector µ

respectively. Thus we have a grid of cells in both the spaces. Centres of the cells

in the input space will be considered as the available inputs.
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Figure 3.1: Construction of symbolic model (a)
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Figure 3.2: Construction of symbolic model (b)

Figure 3.1 to 3.4 depicts a simplified construction of symbolic model of a two

dimensional system with one dimensional input and two partitions in the input
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Figure 3.3: Construction of symbolic model (c)
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Figure 3.4: Construction of symbolic model (d)

space. For partition q1 in state space, the reachable set under input u1 at time

τ , Rτ (q1, u1) together with its intersection with the state space grid is shown in

Figure 3.1. In the symbolic model, all the cells which intersect the reachable set

have a transition from the state q1. The process is repeated for every combination

of cells from the state and the input space.

Theorem 3.6. If Sq(Σ) is a symbolic model of Sτ (Σ) then Sτ (Σ) �Q Sq(Σ).

The theorem says that for a nonlinear control system Σ the sampled system Sτ (Σ)

as per the definition 3.3 and the symbolic model Sq(Σ) as per the definition 3.5

are related under the feedback refinement relation.
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To construct symbolic model of a continuous time nonlinear system S, we first

obtain sampled system Sτ . Sampling time should not be extremely small, as

otherwise it may result in self-loops in the finite state model which may lead to

an empty controller. If sampling time is too large then it may adversely affect

the accuracy of approximation of reachable sets. For symbolic model the state

space and the input space are quantized. Quantisation parameter if too small will

result in very large number of cell partitions which will increase the computation

time. Symbolic model obtained as per the definition 3.5 is related under FRR with

the sampled system. Here the set membership relation acts as the FRR. Now a

controller C2 is synthesized that enforces the given specification on the symbolic

model. Usually this controller needs to be refined to another controller C1 such

that C1 enforces the specification on the original system. The refinement step may

introduce dynamics into the controller which means that the controller itself will

contain a symbolic model, thus its complexity rises. With the use of FRR the set

membership relation acts as a static quantizer.

Physical system −→ sampled system and symbolic model related under feedback

refinement relation −→ controller for the symbolic model such that specification

enforced −→ this controller together with a quantizer will also enforce the speci-

fication on the physical system.



Chapter 4

Reachable set over approximation

In this chapter, we will consider three methods to compute over-approximation of

reachable set.

4.1 Growth bound

Consider a nonlinear system Σ = (Rn, U,U , f) as per Definition (3.1). Let U ′ ⊆ U ,

K ⊆ K ′ ⊆ Rn where K ′ is convex. K ′ called a priori enclosure is such that for

any υ(t) = u ∈ U ′, x ∈ K, t ∈ [0, τ ] , we have ξx,u(t) ∈ K ′, i.e. all trajectories of

duration τ starting from K under input u lie within K ′.

Definition 4.1. A function β : Rn
+×U ′ → Rn

+ is a growth bound [2] of Σ defined

with respect to τ , K and U ′, and can be given as

β(r, u) = eL(u)τr (4.1)

where L : U ′ → Rn×n is obtained by upper bounding the Jacobian of f over K ′ ,

∀x ∈ K ′, Li,j(u) ≥


∂fi(ξ,u)
∂ξj

, i = j∣∣∣∂fi(ξ,u)
∂ξj

∣∣∣ , otherwise
(4.2)

19
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An over approximation of the reachable state set of Σ, at time τ , with initial states

within the hyper interval K = [a, a], under input u ∈ U ′ can be obtained using

the growth bound as

Rτ ([a, a]) = ξc,u(τ) + [−r′, r′] (4.3)

where c = 0.5 ∗ (a + a) and r = 0.5 ∗ (a− a) are the center and the radius of the

initial state set, K ′ can be obtained either by manually supplying the matrix L or

by the use of Algorithm 1, and r′ = eL(u)τr.

Algorithm 1 Computation of a priori enclosure

Require: f , X0 as hyperinterval, u, τ , θm, θpr, Xsafe

1: τsub = τ ,

2: K1 = X0

3: τdivision = τ
τsub

4: for i = 1 to τdivision do

5: find M1 such that |f(x, u)| ≤M1,∀x ∈ K1

6: c = centre and r = radius of K1 i.e., K1 = c+ [−r, r]

7: K2 = c+ [−(r +M1τsub), (r +M1τsub)]

8: find M2 such that |f(x, u)| ≤M2,∀x ∈ K2

9: while (max(M2 −M1) > θm) do

10: M1 = M2

11: K2 = c+ [−(r +M1τsub), (r +M1τsub)]

12: update M2 such that |f(x, u)| ≤M2,∀x ∈ K2

13: if max(radius(K2)− θpr ∗ radius(Xsafe)) > 0 then

14: τsub = τsub ∗ 0.5

15: go to step 2

16: end if

17: end while

18: K1 = K2

19: end for

20: K ′ = K2

In Algorithm 1, user need to supply the parameters θm and θpr. Sufficiently small

vaue for θm (say 10−4) will enable to identify the step when the maximum element
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of the vector (M2−M1) has become smaller than θm, and thusM2 can be considered

to have stabilized. Xsafe represents the hyperinterval in state space inside which

the system trajectories are expected to stay for all considered time. θpr (say 100)

is used to compare radius of the enclosure computed till any step with the radius

of the safe set Xsafe. If the former becomes larger than θpr times the later, then

the time step is halved and we begin again with K1 = X0.

4.2 Method 2

Objective is to compute the reachable set in one sampling tme for dynamics in

(3.1) for a given value of input which is kept fixed over the duration.

4.2.1 Overview

The method involves computation of reachable set of a nonlinear system through

linearization utilising zonotopes for set representation [12]. For time t ∈ [0, τ ]

the nonlinear system ξ̇(t) = f(ξ(t), u) is first linearized into a system of form

ξ̇(t) ∈ flin(ξ(t), u) = f̄ + A∆ξ(t) + L where f̄ = f(x̄, u),∆ξ(t) = ξ(t) − x̄, x̄

is the linearization point, L is the set of possible linearization errors such that

f(ξ(t), u) ∈ flin(ξ(t), u) for the considered time. As we are considering piecewise

constant input signal so u stays fixed for each sampling period τ . Assuming some

small value for L denoted by L̄ the reachable set for duration τ , R[0,τ ](X0, u)

for given initial state set X0 is computed using the linearized system flin. Now

overapproximation of linearization error L̂ is computed over the set R[0,τ ](X0, u).

If L̂ * L̄ i.e. the computed error is not a subset of the applied error, then the value

of assumption for L̄ needs to be updated to a larger value and the procedure is

repeated until L̂ ⊆ L̄. Using the accepted L̂ the reachable set at time τ , Rτ (X0, u)

can be obtained.
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4.2.2 Linearization

For sampling time [0, τ ] we assume the input u to be constant, then f(ξ(t), u) can

be represented as f(ξ(t)). The dynamics of a nonlinear system as given in (3.1)

can be expressed using Taylor series expansion about the point x̄ as

ξ̇i(t) = fi(ξ(t))

= fi(x̄) +
∂fi(ξ)

∂ξ

∣∣∣∣∣∣ξ(t)=x̄ (ξ(t)− x̄) +
1

2
(ξ(t)− x̄)T

∂2fi(ξ)

∂ξ2

∣∣∣∣∣∣ξ(t)=x̄ (ξ(t)− x̄) + . . .

(4.4)

First order Taylor series and it’s Lagrange remainder L can be used to overap-

proximate the infinite series (4.4) as [26]

ξ̇i(t) ∈ fi(x̄) +
∂fi(ξ)

∂ξ

∣∣∣∣∣∣ξ(t)=x̄ (ξ(t)− x̄) +
1

2
(ξ(t)− x̄)T

∂2fi(ζ(ξ(t), x̄))

∂ξ2
(ξ(t)− x̄)︸ ︷︷ ︸

Lagrange remainder, Li

,

(4.5)

where ζ lies between ξ(t) and x̄, ζ ∈ {x̄ + α(ξ(t)− x̄)|α ∈ [0, 1]} and Li is the ith

element of the interval vector L ∈ IRn.

Thus we have

ξ̇(t) ∈ f̄ + A∆ξ(t) + L, (4.6)

where f̄ = f(x̄), A = ∂f(ξ)
∂ξ

∣∣∣∣∣∣ξ(t)=x̄ and ∆ξ(t) = ξ(t)− x̄.

The expression in (4.6) can be written as

ξ̇(t) = A∆ξ(t) + u,where u ∈ f̄ + L (4.7)

For ξ(t), x̄ ∈ ZZ = (c, g(1), . . . , g(q)), where ZZ is the reachable set for duration τ ,

we have ζ ∈ ZZ .
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Now, for σ = ξ(t)− x̄, ∆ZZ = ZZ − x̄ and H(i)(ζ) = ∂2fi(ζ)
∂ξ2

we can write

Li =

{
1

2
σTH(i)(ζ)σ | ζ ∈ ZZ , σ ∈ ∆ZZ

}
(4.8)

4.2.2.1 Overapproximation of L

An overapproximation of the absolute value of the Lagrange remainder L can be

obtained as [12]

|Li| ⊆ [0, L̂i],

where L̂i =
1

2
γT max

ζ∈ZZ

(∣∣H(i)(ζ)
∣∣) γ,

γ = |c− x̄|+
q∑
i=1

|g(i)|,

(4.9)

the max-operator and the absolute values taken elementwise.

Proof. From (4.8) we have

Li =

{
1

2
σTH(i)(ζ)σ

∣∣ζ ∈ ZZ , σ ∈ ∆ZZ
}

|Li| =
{

1

2
|σTH(i)(ζ)σ|

∣∣ζ ∈ ZZ , σ ∈ ∆ZZ
}

⊆ 1

2

[
0,max

(
|σTH(i)(ζ)σ|

)]
, ζ ∈ ZZ , σ ∈ ∆ZZ

⊆ 1

2

[
0, max

σ∈∆ZZ
(|σ|)T max

ζ∈ZZ
(|H(i)(ζ)|) max

σ∈∆ZZ
(|σ|)

]
As

∆ZZ =

{
x : x = (c− x̄) +

q∑
i=1

β(i)g(i),−1 ≤ β(i) ≤ 1

}
we have

max
σ∈∆ZZ

(|σ|) = |c− x̄|+
q∑
i=1

|g(i)|

Thus we get (4.9)

As is evident from (4.9) γ is minimum for x̄ = c, but c is not known beforehand.

To keep linearization error low, the linearization point x̄ is selected closer to the
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center of the reachable set at time τ [25],

x̄ = c0 +
τ

2
f(c0) (4.10)

where ZZ0 = (c0, g
(1)
0 , . . . , g

(q)
0 ) is the initial state set.

A less conservative overapproximation of L: [25]

Let H
(i)
j,k(ζ) represent the element in row j and column k of the matrix H(i)(ζ) and

H(i)
j,k =

{
H

(i)
j,k(ζ) | ζ ∈ IH(ZZ)

}
. Then H(i) ∈ IRn is an interval matrix which can

be split as H(i) = H
(i)
c +

[
−H(i)

∆ , H
(i)
∆

]
. From (4.8) we can write

Li ⊆
{

1

2
σTH(i)σ | σ ∈ ∆ZZ

}
=

{
1

2
σT
(
H(i)
c +

[
−H(i)

∆ , H
(i)
∆

])
σ | σ ∈ ∆ZZ

}
=

1

2

{
σTH(i)

c σ + σT
[
−H(i)

∆ , H
(i)
∆

]
σ | σ ∈ ∆ZZ

}
Li ⊆ LZ =

1

2

(
quad(H(i)

c ,∆Z
Z) + [−η, η]

)
where η =

∣∣∆ZZ∣∣T H(i)
∆

∣∣∆ZZ∣∣

(4.11)

4.2.3 Reachable set of linear system

Consider a linear system of form

ξ̇(t) = Aξ(t) + u, (4.12)

with initial state x ∈ X0 ⊂ Rn and input u ∈ U ⊂ Rn. Making use of superposition

principle the solution of (4.12) can be written as

ξx,u(t) = ξx,0(t) + ξ0,u(t) (4.13)

where the homogeneous part ξx,0(t) is the solution obtained by considering input to

be zero, and the inhomogeneous part ξ0,u(t) is the solution obtained by considering

the initial state to be zero. Rt(X0, 0) and Rt(0, U) are used to refer to the reachable

set corresponding to the homogeneous solution and the inhomogeneous solution
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respectively. Then the reachable set of (4.12) can be written as Rt(X0, U) =

{ξx,0(t) + ξ0,u(t)|ξx,0(t) ∈ Rt(X0, 0), ξ0,u(t) ∈ Rt(0, U), u ∈ U}.

4.2.3.1 Homogeneous solution

The solution of ξ̇(t) = Aξ(t) at time τ can be written as ξx,0(τ) = eAτx. The

corresponding reachable set is Rτ (X0, 0) = eAτX0. When X0 is a zonotope and

the matrix exponential is computed as per (2.2), the set Rt(X0, 0) also comes out

to be a zonotope. Given points x and ξx,0(τ), the set of points on the straight line

connecting the two is {x+ t
τ
(eAτx− x)|t ∈ [0, τ ]}. We can then write

ξx,0(t) ∈
(
x+

t

τ

(
eAτx− x

)
+ Fx

)
, t ∈ [0, τ ] (4.14)

where F ∈ IRn×n called the correction matrix is such that addition of Fx to the

line segment ensures satisfaction of (4.14).

F =

p∑
i=2

[(
i
−i
i−1 − i

−1
i−1

)
τ i, 0

] Ai
i!

+ E(τ) (4.15)

For computation of F see Appendix A.1. Substituting the set of initial states X0

in (4.14) we obtain

R[0,τ ](X0, 0) =

{
X0 +

t

τ

(
eAτX0 −X0

)
+ FX0|t ∈ [0, τ ]

}
or, R[0,τ ](X0, 0) = CH(X0, e

AτX0) + FX0

(4.16)

where CH(A,B) = {a+ β (b− a) |a ∈ A, b ∈ B, β ∈ [0, 1]} gives the convex hull of

the two sets A and B, and it’s overapproximation can be computed as per (2.14)

for the case of zonotopes.



Chapter 4. Reachable set over approximation 26

4.2.3.2 Inhomogeneous solution

For zero initial state and constant input u during the period [0, τ ], the solution of

(4.12) is

ξ0,u(τ) = eAτ
∫ τ

0

e−Atudt

=

∫ τ

0

eA(τ−t)udt

=

∫ τ

0

eA(τ−t)dt(u)

(4.17)

Substitute, s = τ − t

ξ0,u(τ) =

∫ τ

0

eAsds(u) (4.18)

= A−1(eAτ − I)u (4.19)

Substituting for the matrix exponential from (2.2) in (4.18) we get

ξ0,u(τ) ∈
∫ τ

0

(
p∑
i=0

(As)i

i!
+ E(s)

)
ds(u)

=

∫ τ

0

(
p∑
i=0

(As)i

i!
ds

)
u+

∫ τ

0

(E(s)ds) (u)

=

(
p∑
i=0

Aiτ i+1

(i+ 1)!

)
u+

∫ τ

0

(E(s)ds) (u) (4.20)

From(2.3) we have

E(t) =
(‖A‖∞ t)p+1

(p+ 1)!

1

1− ε
[−1,1]

= φ(t)[−1,1]

where φ(t) =
(‖A‖∞t)p+1

(p+1)!
1

1−ε ∈ R+ is monotone in t, thus

∫ τ

0

φ(t)dt < φ(τ)τ
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Therefore ∫ τ

0

E(s)ds =

∫ τ

0

φ(s)[−1,1]ds

=

∫ τ

0

φ(s)ds[−1,1]

⊂ φ(τ)τ [−1,1]

= E(τ)τ

(4.21)

Combining (4.20) and above equation we get

ξ0,u(τ) ∈

(
p∑
i=0

Aiτ i+1

(i+ 1)!

)
u+ E(τ)τu (4.22)

Then an overapproximation of the exact reachable set for the system (4.12) with

zero initial state and input set U is

Rτ (0, U) =

(
p∑
i=0

Aiτ i+1

(i+ 1)!

)
U + E(τ)τU (4.23)

For the reachable set R[0,τ ](0, U) corresponding to the inhomogeneous part we need

to distinguish between the two cases: origin is contained in U , and not contained in

U . For this we will make use of the relation Rτ+∆t(0, U) = eAτR∆t(0, U)+Rτ (0, U)

which can be obtained as shown below.

For ∆t > 0 with (4.17) we have

ξ0,u(τ) =

∫ τ

0

eA(τ−s)ds.u

ξ0,u(τ + ∆t) =

∫ τ+∆t

0

eA(τ+∆t−s)ds.u

=

∫ ∆t

0

eA(τ+∆t−s)ds.u+

∫ ∆t+τ

∆t

eA(τ+∆t−s)ds.u

Substitute (∆t− s) = −m in the second integral term to get

ξ0,u(τ + ∆t) = eAτ
∫ ∆t

0

eA(∆t−s)ds.u+

∫ τ

0

eA(τ−m)dm.u

= eAτξ0,u(∆t) + ξ0,u(τ)

(4.24)



Chapter 4. Reachable set over approximation 28

Thus in terms of reachable set we get

Rτ+∆t(0, U) = eAτR∆t(0, U) +Rτ (0, U) (4.25)

The set U contains origin

Now consider two sets A,B ⊂ Rn, such that B contains the origin (0 ∈ B) then

A is contained in the Minkowski sum of the sets (i.e. A ⊆ A + B). From (4.23)

we can see that if set U contains origin, then the set Rτ (0, U) also contains origin

and so does the set eAτR∆t(0, U). Thus

Rτ (0, U) ⊆ Rτ+∆t(0, U) (4.26)

in words, the set Rτ (0, U) contains the reachable sets of previous points in time.

Therefore

R[0,τ ](0, U) = Rτ (0, U) (4.27)

The set U doesn’t contain origin

When the set U doesn’t contain origin, we can express it as U = ũ + Ũ , such

that 0 ∈ Ũ ⊂ Rm and ũ ∈ Rm. The reachable set due to Ũ can be computed as

shown in the preceding discussion. The reachable set due to ũ can be written from

(4.19) as ξ0,ũ(τ) = A−1(eAτ − I)ũ. The set of points on the straight line joining 0

and ξ0,ũ(τ) is
{

0 + t
τ
A−1(eAτ − I)ũ|t ∈ [0, τ ]

}
. This set can be expanded so as to

contain ξ0,ũ(t),

ξ0,ũ(t) ∈
(

0 +
t

τ
A−1(eAτ − I)ũ+ F̃ũ

)
, t ∈ [0, τ ] (4.28)

The input correction matrix F̃ is such that (4.28) is satisfied.

F̃ =

p∑
i=2

[(
i
−i
i−1 − i

−1
i−1

)
τ i, 0

] Ai−1

i!
+ E(τ)/‖A‖∞ (4.29)

See Appendix A.2 for derivation of F̃. From (4.28), (4.14) and (4.16) we can write

R[0,τ ](X0, 0) +R[0,τ ](0, ũ) = CH
(
X0, e

AτX0 + ξ0,ũ(τ)
)

+ FX0 + F̃ũ (4.30)
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Thus

R[0,τ ](X0, U) = R[0,τ ](X0, 0) +R[0,τ ](0, ũ) +R[0,τ ](0, Ũ) (4.31)

where R[0,τ ](0, Ũ) can be computed using (4.27) and (4.23).
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Algorithm 2 Reachable set computation using Method 2

Require: f , X0 = (c, g(1), . . . , g(q)) ⊆ Rn, u, τ

1: x̄ = c+ 0.5τf(c, u) ; f̄ = f(x̄, u) ; A = ∂f(x,u)
∂x

∣∣∣∣∣∣x̄ ; p = 5 ; ε =
‖A‖∞τ
p+2

2: while (ε ≥ 1) do

3: p = p+ 1, ε =
‖A‖∞τ
p+2

4: end while

5: Ebound =
(‖A‖∞τ)p+1

(p+1)!
1

1−ε

6: while (Ebound ≥ 10−3) do

7: p = p+1, Ebound =
(‖A‖∞τ)p+1

(p+1)!
1

1−ε

8: end while

9: E(τ) = Ebound[−1,1]

10: eAτp =
∑p

i=0
(Aτ)i

i!
+ E(τ)

11: F =
∑p

i=2[(i
−i
i−1 − i

−1
i−1 ), 0] (τA)i

i!
+ E(τ)

12: F̃ =
∑p

i=2[(i
−i
i−1 − i

−1
i−1 ), 0] τ

iAi−1

i!
+ E(τ)
‖A‖∞

13: ∆X0 = X0 − x̄

14: Rf̄ =
[∑p

i=0
Aiτ i+1

(i+1)!
+ τE(τ)

]
f̄

15: R1 =
(
CH(∆X0, e

Aτ
p ∆X0 +Rf̄ ) + F∆X0

)
+ x̄

16: L̄ = 0, chk = 2

17: while (chk ≥ 1) do

18: Rerr =
[∑p

i=0
Aiτ i+1

(i+1)!
+ τE(τ)

]
[−L̄, L̄]

19: if (0 /∈ f̄ + [−L̄, L̄]) then

20: R2 = R1 + F̃ f̄

21: else

22: R2 = R1

23: end if

24: R[0,τ ] = R2 +Rerr

25: Compute L̂ over R[0,τ ]

26: chk = maxi(L̂i/L̄i)

27: L̄ = 1.1L̂

28: end while

29: Rerr =
[∑p

i=0
Aiτ i+1

(i+1)!
+ τE(τ)

]
[−L̂, L̂]

30: Rτ (X0) =
(
eAτp ∆X0 +Rf̄ +Rerr

)
+ x̄
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In Algorithm 2, L̂ can be computed by either of (4.9) or (4.11). With (4.11), L̂

obtained by taking interval hull of the computed zonotope LZ , also in computation

of Rerr we use LZ instead of [−L̂, L̂].

4.3 Method 3

The method in [17] gives an over approximation of exact reachable set of linear

systems together with the upper bound on the Hausdorf distance between the

exact reachable set Re
[0,τ ](X0, U) and it’s overapproximation R[0,τ ](X0, U). Let us

define the Hausdorf distance between two compact sets A,B ⊆ Rn as

dH(A,B) = max

(
sup
x∈A

inf
x′∈B
‖x− x′‖ , sup

x′∈B
inf
x∈A
‖x− x′‖

)
(4.32)

When the sets are equal A = B, we have dH(A,B) = 0.

We again consider the linear system in (4.12). Given the set of initial states X0

and the set of input U , let us denote

RX0 = max
x∈X0

‖x‖ , DX0 = max
x,y∈X0

‖x− y‖ , RU = max
u∈U
‖u‖ ,

where ‖.‖ represents the infinity norm. From [17] we have an over approximation

of the reachable set over duration [0, τ ] for states starting in X0 under input u ∈ U

to be

R[0,τ ](X0, U) = CH
(
X0, e

τAX0 + τU + ατ�B
)
, (4.33)

such that,

dH
(
Re

[0,τ ](X0, U), R[0,τ ](X0, U)
)
≤ 1

4

(
eτ‖A‖ − 1

)
DX0 + 2ατ

where ατ = (eτ‖A‖− 1− τ ‖A‖)(RX0 + RU
‖A‖) and �B represents the ball in infinity

norm with origin as center and unity radius. Further an overapproximation of the

exact reachable set at time τ , Re
τ (X0, U) can be obtained as

Rτ (X0, U) = eτAX0 + τU + βτ�B, (4.34)
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such that,

dH (Re
τ (X0, U), Rτ (X0, U)) ≤ 2βτ

where βτ = (eτ‖A‖ − 1− τ ‖A‖) RU‖A‖

Algorithm 3 Reachable set computation using Method 3

Require: f , X0 = (c, g(1), ..., g(q)) ⊆ Rn, u, τ

1: x̄ = c+ 0.5τf(c, u); f̄ = f(x̄, u); A = ∂f(x,u)
∂x

∣∣∣∣∣∣x̄ ; ∆X0 = X0 − x̄

2: R∆X0 = maxx∈∆X0 ‖x‖∞
3: L̄ = 0, chk = 2

4: while (chk ≥ 1) do

5: V = f̄ + [−L̄, L̄]

6: RV = maxv∈V ‖v‖∞
7: ατ =

(
eτ‖A‖∞ − 1− τ ‖A‖∞

) (
R∆X0 + RV

‖A‖∞

)
8: R[0,τ ] = CH

(
∆X0, e

τA∆X0 + τV + ατB
)

+ x̄

9: Compute L̂ over R[0,τ ]

10: chk = maxi(L̂i/L̄i)

11: L̄ = 1.1L̂

12: end while

13: V = f̄ + [−L̂, L̂]

14: RV = maxv∈V ‖v‖∞
15: βτ =

(
eτ‖A‖∞ − 1− τ ‖A‖∞

)
RV
‖A‖∞

16: Rτ (X0) =
(
eτA∆X0 + τV + βτB

)
+ x̄

4.4 Implementation

The procedure to compute reachable set using either method 2 or 3 is implemented

in C++ and is interfaced with SCOTS which is a tool for synthesis of symbolic

controller for nonlinear systems. SCOTS implementation uses the growth bound

method which gives relatively more conservative overapproximation of reachable

set than the Method 2.
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4.4.1 Installation

The code can be downloaded from https://github.com/mahendrasinghtomar/

ReachableSetZonotope. Replace the files ’Abstraction.hh’ and ’SymbolicModel.hh’

in the ’src’ folder of SCOTS with the downloaded ones. Additional C++ libraries

needed:

1. Eigen a C++ library for linear algebra. [http://eigen.tuxfamily.org/

index.php?title=Main_Page]

2. vnodelp for interval arithmatic. [http://www.cas.mcmaster.ca/~nedialk/

vnodelp/]

3. FADBAD++ for automatic differentiation. Comes bundled with vnodelp or

can be downloaded from [http://www.fadbad.com/fadbad.html]

4. gnuplot for plotting sets [http://www.gnuplot.info/]

5. The header file ”gnuplot-iostream.h” as an interface to send data from C++

to gnuplot. It can be downloaded from http://www.stahlke.org/dan/

gnuplot-iostream

4.4.2 Usage

’Example 2D cartpole.cc’ to serve as a template example file. System dynamics

to be written inside the function ’func Lj system’.

https://github.com/mahendrasinghtomar/ReachableSetZonotope
https://github.com/mahendrasinghtomar/ReachableSetZonotope
[http://eigen.tuxfamily.org/index.php?title=Main_Page]
[http://eigen.tuxfamily.org/index.php?title=Main_Page]
[http://www.cas.mcmaster.ca/~nedialk/vnodelp/]
[http://www.cas.mcmaster.ca/~nedialk/vnodelp/]
[http://www.fadbad.com/fadbad.html]
[http://www.gnuplot.info/]
http://www.stahlke.org/dan/gnuplot-iostream
http://www.stahlke.org/dan/gnuplot-iostream


Chapter 5

Examples and Conclusion

Computation of all the examples carried out on Core i7 3.5GHz processor.

5.1 Example 1

Consider a system with the dynamics:

ẋ1 = x2 − 0.1x1

ẋ2 = ux1

(5.1)

We compare it’s reachable setRτ (X0, u) forX0 = ([−49,−50]T , diag(0.25, 0.25)), u =

−1 from the three methods for three different sampling times in Figure 5.1. As

we can observe, among the three we obtain the tightest overapproximation from

Method 2, while the most conservative from Method 3. The extent of conserva-

tiveness of the Method 3 keep on increasing with sampling time.

Next we design controller for reachability specification using the first two methods

with SCOTS. Consider state space X = [−50, 50] × [−50, 50], state space quan-

tisation ηss = [0.5; 0.5], input space U = [−2, 2] , input space quantisation ηis =

1, target set = [40, 49.5]× [40, 49.5], and sampling time τ = 0.75. Table 5.1 gives

34
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Table 5.1: Example 1, τ = 0.75

Growth
bound
manual L

Method 2

L̂ by (4.9)

Number of transitions 1589727 944747
Controller domain size 11007 40009
Computation time 0.6287 sec 191.71 sec

the number of transitions in the constructed discrete abstraction, the obtained

controller domain size and the computation time. The controller domain size refer

to the number of states in X for which we have available control inputs which can

drive the system such that the specification is realized. Table 5.2 lists the data

obtained for a sampling time of τ = 0.1. The first data column is for the case

when the matrix L in the growth bound method is to be supplied manually by

the user to SCOTS. The second data column is for the case when L is computed

internally by first obtaining the a priori enclosure using the Algorithm 1.

During the construction of discrete abstraction if the overapproximation of reach-

able set is tighter i.e. smaller in size, then the number of state space grid cells

with which it intersects may come out to be smaller. This will result in lesser non-

determinism and hence lower number of transitions in the discrete abstraction.

Transitions corresponding to those reachable sets are discarded which happen to

intersect with the avoid set in specification, goes outside the safe set or the allowed

state space. When the overapproximation is tighter we have less number of such

occurrences, and thus less combinations discarded of state space cell and input.

Figure 5.2 represents in red color the target area, in grey the states for which we

have a control input available in the designed controller and in white the states

for which we didn’t obtain any control input. The black curved line represents a

simulated trajectory.

Figure 5.3 depicts the reachable sets obtained forX0 = ([−49,−50]T , diag(0.25, 0.25))

and τ = 0.75 for three different inputs u= -2, -1 and 1 respectively. The black

lines coming into the set give a part of the trajectory of the system
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Figure 5.1: Example 1: Reachable set from the three methods for different
sampling times
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Figure 5.2: Example1: Domain of reachability controller
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Figure 5.3: Example1: Reachable sets using growth bound (in green) and the
method 2 (in red) for three different inputs.

5.2 Example (Cartpole)

Invariance specification. Consider a two dimensional model of pendulum on a cart

[27]

ẋ1 = x2,

ẋ2 = −ω2 (sin(x1) + u1cos(x1))− 2γx2,
(5.2)
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Table 5.2: Example 1, τ = 0.1

Growth
bound
manual L

Growth
bound
automatic L

Method 2

L̂ by (4.9)

Method 2

L̂ by (4.11)

Number of
transitions

932125 932125 927045 927045

Controller
domain size

38528 38528 38532 38532

Computation
time

0.57 sec 1.77 sec 41 sec 173.56 sec

Table 5.3: Example: cartpole

Growth
bound
manual L

Growth
bound
automatic L

Method 2

L̂ by (4.9)

Method 2

L̂ by (4.11)

Number of
transitions

388066 361072 352952 351674

Controller
domain size

830 836 836 837

Computation
time

0.33 sec 1.43 sec 20 sec 116.54 sec

where ω = 1 and γ = 0.0125. For an invariance problem with X = [0.5π, 1.5π]×

[−1, 1], ηss = [0.05; 0.1], U = [−3, 3], ηis = 0.1, τ = 0.25 and safe set = X, the

obtained controller data is shown in Table 5.3

5.3 Example (Vehicle)

Path planning for an autonomous vehicle. Consider the dynamics [2]

ẋ1 = u1
cos(α + x3)

cos(α)
,

ẋ2 = u1
sin(α + x3)

cos(α)
,

ẋ3 = u1 tan(u2),

(5.3)

where α = tan−1(tan(u2)/2), (x1, x2) is the position and x3 is the orientation of

the vehicle in the 2-dimensional plane. The control inputs u1 and u2 are the rear

wheel velocity and the steering angle. We designed controller using SCOTS for
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Figure 5.4: Output trajectory for reach and avoid specification
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Figure 5.5: 2D projection of the computed linearisation error for vehicle ex-
ample

reachability specification where the target set is = [9, 9.5]× [0, 0.5], τ = 0.3, X =

[0, 10]×[0, 10]×[−3.5, 3.5], ηss = [0.2; 0.2; 0.2], U = [−1, 1]×[−1, 1], ηis = [0.3; 0.3].

Figure 5.4 shows the two dimensional state space. Rectangular boxes in blue color

represent the obstacles while the red rectangle represents the target set. Green dot

is the starting position and the black curved line is a simulated trajectory using

the designed controller.

Figure 5.5 shows the projection on two dimensional plane of the computed lin-

earisation error by the two methods for τ = 0.3, X0 = [0.8, 1.2] × [0.8, 1.2] ×
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Table 5.4: Example: vehicle

Growth
bound
manual L

Growth
bound
automatic L

Method 2

L̂ by (4.9)

Method 2

L̂ by (4.11)

Number of
transitions

35772302 34740770 34764178 34697234

Controller
domain size

48018 48314 48354 48354

Computation
time

20.79 sec 71.72 sec 20.25 min 2.6 hr

[1.8, 2.2], u = [0.6; 0.6]. LinErrorMethod1 and LinErrorMethod2 represent the er-

ror computed by (4.9) and (4.11) and their computation times are 0.0045 sec and

0.0111 sec respectively.

5.4 Example (Aircraft)

An aircraft landing maneuver. Consider the aircraft dynamics taken from [2]

ẋ1 =
1

m
(u1 cos(u2)−D(u2, x1)−mg sin(x2)),

ẋ2 =
1

mx1

(u1 sin(u2) + L(u2, x1)−mg cos(x2)),

ẋ3 = x1 sin(x2),

(5.4)

where

D(u2, x1) = (2.7 + 3.08(1.25 + 4.2u2)2)x2
1,

L(u2, x1) = (68.6(1.25 + 4.2u2))x2
1

m = 60 × 103, g = 9.81. x1, x2 and x3 refer to the velocity, the flight path an-

gle and the altitude of the aircraft respectively. The inputs u1 and u2 are the

thrust of the engines and the angle of attack. When objective is to control the

aircraft from some height to close to the ground we can consider it as a reachability

problem. For sampling time τ = 0.25, target set = [63, 75] × [−π/60, 0] × [0, 2.5]

X = [58, 83]× [−π/60, 0]× [0, 56], ηss = [0.05; 0.0008; 0.17],

U = [0, 32000] × [0, 2π/45], ηis = [32000; 0.02], the designed controllers have do-

main sizes as shown in Table 5.5.
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Table 5.5: Example: aircraft

Growth
bound
manual L

Growth
bound
automatic L

Method 2

L̂ by (4.9)

Number of
transitions

2315456528 2313163518 2318432048

Controller
domain size

2870811 2876307 2878810

Computation
time

8.84 min 1 hr 76.3 hr

5.5 Conclusion

As we can see from the examples the accuracy of approximation of reachable

set affects the size of the symbolic model and of the obtained controller domain.

Reachable sets from the Method-2 are clearly least conservative. Although arbi-

trarily close [17] overapproximation can be obtained by decreasing the time step

size by Method-3 for linear systems, our implementation which is for only one time

step and based on linearization is highly dependent on the sampling time. With

increasing sampling time the conservativeness of the reachable set keep on rising

for the Method-3, and so it is not used for symbolic controller synthesis. Large

values of computation time for Method-2 may be ascribed to inefficiency in code

implementation. For example for calculation of derivatives automatic differentia-

tion is used which needs to be computed at every single iteration. Use of symbolic

differentiation which needs computation only once and value substitution in all

other subsequent steps can result in significant reduction in computation time.
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A.1 Computation of the correction matrix F

(see [24]). From (4.14)

ξx,0(t) ∈
(
x+

t

τ

(
eAτx− x

)
+ Fx

)
, t ∈ [0, τ ]

where ξx,0(t) = eAtx. When (2.2) used as matrix exponential, we get

eAtp x ⊆
(
x+

t

τ

(
eAτp x− x

)
+ Fx

)
, t ∈ [0, τ ]

Therefore, F ⊇ eAtp − I −
t

τ
(eAτp − I),∀t ∈ [0, τ ]

Now,

eAtp − I −
t

τ
(eAτp − I) =

p∑
i=0

(At)i

i!
+ E(t)− I − t

τ

(
p∑
i=0

(Aτ)i

i!
+ E(τ)− I

)

=

p∑
i=2

(ti − tτ i−1)
1

i!
Ai + E(t)− t

τ
E(τ)

(A.1)

The second derivative of (ti − tτ i−1) is positive for t ∈ (0, τ ], therefore it has a

local minimum which can obtained by equating its first derivative to zero:

d

dt
(ti − tτ i−1) = 0

iti−1
min − τ i−1 = 0

tmin = i−
1
i−1 r

41
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As (ti − tτ i−1) = 0 for t = 0 and t = τ , therefore we have

(ti − tτ i−1) ∈
[
(i
−i
i−1 − i

−1
i−1 )ri, 0

]
,∀t ∈ [0, τ ] (A.2)

Next, bounds for E(t)− t
τ

E(τ) are computed. From(2.3) we have

E(t) =
(‖A‖∞ t)p+1

(p+ 1)!

1

1− ε
[−1,1]

= φ(t)[−1,1]

where φ(t) =
(‖A‖∞t)p+1

(p+1)!
1

1−ε ∈ R+ is monotonically increasing in t. So we have∣∣(φ(t)− t
τ
φ(τ)

)∣∣ ≤ φ(τ),∀t ∈ [0, τ ] Thus,

E(t)− t

τ
E(τ) =

(
φ(t)− t

τ
φ(τ)

)
[−1, 1]

⊆ φ(τ)[−1, 1]

= E(τ)

(A.3)

From (A.1), (A.2) and (A.3) we can write

F =

p∑
i=2

[(
i
−i
i−1 − i

−1
i−1

)
τ i, 0

] Ai
i!

+ E(τ) (A.4)

A.2 Computation of the input correction matrixF̃

From (4.28) and (2.2) we have

A−1(eAtp − I)ũ ⊆
(

0 +
t

τ
A−1(eAτ − I)ũ+ F̃ũ

)
, t ∈ [0, τ ]

Therefore

F̃ ⊇ A−1(eAtp − I)− t

τ
A−1(eAτ − I)

= A−1

(
(eAtp − I)− t

τ
(eAτ − I)

)
F̃ = A−1F
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= A−1

(
p∑
i=2

[(
i
−i
i−1 − i

−1
i−1

)
τ i, 0

] Ai
i!

+ E(τ)

)

=

p∑
i=2

[(
i
−i
i−1 − i

−1
i−1

)
τ i, 0

] Ai−1

i!
+ E(τ)/‖A‖∞

Here, A−1E = E/ ‖A‖∞ as infinity norm is involved in the computation of E (see

[28]).
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[18] Wolfgang Kühn. Rigorously computed orbits of dynamical systems without

the wrapping effect. Computing, 61(1):47–67, 1998.

[19] Matthias Rungger and Majid Zamani. Scots: A tool for the synthesis of

symbolic controllers. In Proceedings of the 19th International Conference on

Hybrid Systems: Computation and Control, pages 99–104. ACM, 2016.

[20] Matthias Althoff. An introduction to cora 2015. In ARCH@ CPSWeek, pages

120–151, 2015.

[21] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi
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